Publish/Subscribe Internetworking & the H2020 POINT project

George C. Polyzos

Mobile Multimedia Laboratory
Department of Informatics
School of Information Sciences and Technology
Athens University of Economics and Business
Athens 113 62, Greece

polyzos@aueb.gr, http://mm.aueb.gr/
Tel.: +30 210 8203 650, Fax: +30 210 8203 325

AUEB/MMlab Collaborators
Faculty: G. Xylomenos, V. Siris, G. Marias, St. Toumpis
PostDocs: N. Fotiou, P. Frangoudis, C. Ververidis, K. Katsaros
PhD students: C. Tsiropoulos, X. Vasilakos, C. Stais, I. Thomas
Outline

- **Information-Centric Networking (ICN)**
 - Motivation, history, approaches
 - Introduction, overview: PSI, CCN/NDN, Mobility First

- **Pub-Sub Internetworking (PSI): unique features**
 - fast stateless (multicast) forwarding / 'source' routing
 - centralized routing & resource allocation, resemblance to SDN

- **Case studies**
 - Multimedia distribution
 - Security and privacy
 - (I-CAN: I-C Access Networks)
 - (Mobility support)

- **POINT: IP Over ICN - The Better IP?**
 - Motivation & hypothesis
 - Overview of approach
 - Plans

- **Discussion & Outlook**
Internet History and Outlook

- **At the beginning...**
 - cooperation; no competition...
 - **no** commercial traffic!
 - endpoint-centric services/E2E

- **Now...**
 - Content distribution...
 - >50% of traffic today is video↑
 - Overlays... DPI by ISPs...
 - Trust? Endpoint trust?
 - viruses, phishing, DoS attacks...
 - E2E?
 - NAT, firewalls, middleboxes, CDNs
 - The sender has the power...
 - Tussles...
 - e.g.: privacy vs. accountability

- **Connecting Wires**
 - the past...

- **Interconnecting Computers**
 - the current **Internet**
 - evolutionary development
 - ... started decades earlier

- **Interconnecting Information**
 - the **Future Internet**
 - revolutionary research
 - 10-15 years in the future
 - **tussle** resolution at or near run-time
 - **Trust-to-Trust principle**

polyzos@aueb.gr
Publish-Subscribe Internet Vision

- **information centrism**
 - *everything is information & information is everything*
- **Recursive** & and generalized use of *publish-subscribe*
 - enables *dynamic change of roles between actors*
 - Network cache
 - publishes info (cached)
 - subscribes to get info to cache
- Access Points publish ID
 - mobiles subscribe

Objectives

- Specify, implement, & test an internetworked pub/sub architecture
 - follow a *clean-slate design* approach
- Perform qualitative and quantitative evaluation
 - Security and socio-economics important!
 - Migration and incentive scenarios important (e.g., overlay)!

polyzos@aueb.gr
ICN timeline

papers/talks projects

Content Centric Networking (CCN) / Named Data Networking (NDN)

- CCN
 - @ PARC
- NDN /2
 - NSF
 - UCLA, …

polyzos@aueb.gr
MobilityFirst

- 160 bit Globally Unique Identifier (GUID)
 - for each information object, device, service
- GUID translated into a network address (IP) through a Global Name Resolution Service (GNRS)
- publishers register GUIDs to GNRS and subscribers perform requests/queries
- routing takes place based on the network address
Our ICN-related Research Projects

- **PSIRP**: Publish Subscribe Internet Routing Paradigm
 - FP7 ICT STREP, 2008-2010
 - the basis
 - focus on (inter)-networking

- **Pursuit**: Publish Subscribe Internet Technologies
 - FP7 ICT STREP, 2010-2013
 - extending, above & below the Internet layer
 - optical, wireless, mobility, transport…

- **Euro-NF**: Anticipating the Network of the Future—From Theory to Design
 - FP7 ICT Network of Excellence, 2008-2012
 - ASPECTS, GOVPIMIT, E-key-nets

- **Eiffel**: Evolved Internet Future For European Leadership
 - FP7 ICT SSA, 2008-2010; Think-Tank continued
 - June 2011 TT @ MIT: Information-Centric Networking

- **φSAT**: The Role of Satellites in Future Internet Services
 - European Space Agency funded
 - 2011-2013

- **I-CAN**: Information-Centric Future Access Networks
 - NSRF (Greece), 2014-2015

- **POINT**: IP Over ICN - The better IP
 - H2020 ICT STREP, 2015-2017

polyzos@aueb.gr
Publish-Subscribe Internetworking (PSI) Key Functions and Components

- publish – subscribe – rendezvous
 - Rendezvous **ID: hash of content** (/name)
 - asynchronous and multicast
 - restores the imbalance of power sender/receiver(s)
 - + Scope ID: aggregation, policies…
- PSI Basic Functions: **RTF**
 - **Rendezvous**: Matches *publications* with *subscriptions* and initializes forwarding
 - **Topology**: Monitors the network and creates information delivery paths
 - **Forwarding**

PSI Identifiers
PSI Unique Features

- **Fast forwarding**
 - Bloom filter based forwarding (→ forwarding identifiers)
 - simple, stateless, fast forwarding
 - incl. for multicast
 - path (‘source’) routing
 - path as compact Bloom filter carried on packets

- **Centralized – ‘SDN compatible’ approach**
 - (intra-domain) routing/resource allocation
 - topology discovery/management

- **‘recursive’ use of pub/sub …**
 - object level
 - chunk/packet level…
 - pull transport, error control, rcvr flow control
 - slow & fast rendezvous
 - topology formation: handover = subscribe to network…
Resource Sharing / Multicast

Publisher A

Publish FFF

Subscriber B

Subscribe FFF

Subscriber A

RP

Subscribe FFF

Subscribe FFF

polyzos@aueb.gr
Caching, Multiple Information Sources & Multiple Paths
Caching and replication

- All content sources are equivalent in PSI
 - Origin, cache, or replication point
 - Chunks can be retrieved from different sources
 - Sources are visible to the network
 - Network-level caching

- Caching vs. replication
 - Similar to the user, different to the network
 - Replication is planned (as in CDNs)
 - Caching is opportunistic (as in P2Ps)
 - PSI handles both in a unified manner
Secure Forwarding Mechanism (LIPSIN)

- Forwarding based on Bloom filter (called zFilter) that contains all the link IDs through which a packet has to travel
- Supports multicast
- Hashing
 - False positives
 - Limitations in size
 - Hierarchical / inter-networks
- Link identifiers are unique
- zFilter creation involves an encryption mechanism
 - DoS attack resistant
 - Almost impossible to
 - redirect an information flow
 - send arbitrary packets to a destination
zFilters Based Forwarding (LIPSIN)

polyzos@aueb.gr
PubSub Inter networking

- **RTF** functions realized appropriately/differently at different levels/contexts
- hierarchical approach (2-level?), e.g.:
 - fwd-ing with **path of domains**
 - also to counter Bloom filter limitations
 - **global rendezvous** with hierarchical DHTs

- **Mobility**
 - client/subscriber mobility
 - supported / ‘trivial’…
 - optimized through caching/pre-fetching
 - **Publisher mobility**
 - facilitated, by caching to fixed net
Prototype Implementations & Testbeds

1. PSIRP Testbed (w/ Blackhawk)
 - 6 countries: UK, FI, GR, D, BU, US
 - In addition: Belgium during ICT demos
 - Tunneled over the public Internet
 - +dedicated fiber where available

2. PURSUIT Testbed (w/ Blackadder)
 - 25 nodes
 - 5 countries: UK, FI, GR, D, US
 - Tunneled (VPN)
 - over the public Internet

3. φSAT Testbed w/ SAT emulation

Multimedia (streaming) over PSI

- Motivation:
 - “YouTube” a la PSI …

- Streaming videos
 - without RTP/TCP/IP
 - only native PSI

- Basic Components of the application:
 - **Publisher**: the owner of the video
 - **Subscriber**: the user that seeks to view the video

- Technologies Involved
 - Java-JMF player
 - JPSI
 - JNI
 - PSI

- We tried different applications
 - Video
 - Audio/voice (VoPSI)
 - ...

polyzos@aueb.gr
Outlook & Open Issues

- Scalability and Performance Issues
 - Scalable global rendezvous design
 - Transport protocols
 - Multimedia distribution optimization

- Security and privacy

- Deployment and Interoperability Issues
 - Cheap ICN? http only?

- Internet of Things opportunity!
Optimization of Real-Time Media Distribution

Exploit
1. Functional organization
 - Item resolution decoupled from forwarding (path establishment)
2. In-network resources
 - TM nodes → (logically) centralized path/tree formation
3. Stateless multicast forwarding

Compute minimum cost (Steiner) trees for multicast delivery

- Cost of optimization:
 - Signaling cost: resolve the subscription → analogous to a DNS or DHT resolution
 - Computation delay at TM
- Evaluation: Emulation of AS 224 (Norwegian Univ. & Research Network)
 - 233 routers, 75 access routers → 75 PSI access networks...
 - For 90% of subscriptions, delay (Steiner - Shortest-path) < 2ms; For 99.6%, < 60ms
 - Steiner-tree byte footprint compared to Shortest-path trees: - 30%, multiple unicasts: - 48%

Challenges and Opportunities in Video & Multimedia Access & Distribution over ICN

- users express intent to watch video / access multimedia
 - without specifying filename/version/encoding or server location
- ICN locates/selects video source(s) and orchestrates delivery
 - system selects video source(s) for best available/affordable quality
 - takes into account video encoding/bitrate and user connectivity conditions
 - In PSI, ‘system’ = Rendezvous + Topology Manager
 - Requires algorithms and policies
- challenges
 - how to name video
 - Just hashing the video bits won't do...
 - need something richer… (automatic) perceptual hashing
 - chunk size?
 - how ICN selects video source (publisher)
 - how ICN selects actual data path
 - e.g. SDN-like route selection at the flow-level
 - Involves topology management, routing algorithms etc.
PSI Security & Privacy

- ... in addition to intrinsic ICN security features...
- Publisher and Subscriber do not know each other
 - Scopes: PSI’s information firewalls
 - Bloom filter path cannot be replayed
 - rotation of link IDs...
 - DoS attacks to publishers/subscribers eradicated
 - Rendezvous (point/network) knows much...
 - Privacy wrt:
 - publisher: great... (at network & higher layers)
 - rendezvous (broker): bad...
 - proposal: use **Homomorphic Encryption**

Access Control Delegation
- important for fast effective and efficient caching

polyzos@aueb.gr
ICN Privacy Tutorial @ ACM ICN 2014 (Paris)

- ICN Privacy and Name based Security
 - http://mm.aueb.gr/presentations/2014-ICN-Privacy-Tutorial.pdf

- Remarks
 - **ICN-IP relationship**
 - Some of the techniques are adapted for ICN from the existing IP networks
 - More generally, many of techniques are also applicable to the existing IP networks
 - Same for threats and objectives
 - but there are also differences…

 - **Important open issues**
 - **Performance trade offs**
 - on a concrete system
 - Caching vs. Privacy vs. Confidentiality

 - **Governance and authorities**
 - On non random identifiers (human readable)
 - e.g., details on naming

 - **Shared responsibility** for important decisions or actions, departure from single TTP models
 - Bitcoin vs Certificates/PKI
 - Byzantine agreement,…

 - **“NSA free” architectures**
 - Global policies
 - Traffic engineering
Proactive Selective Neighbor Caching for enhancing Mobility Support in ICN

- Delay can be reduced by using proxies to pre-fetch and cache data
 - Mobile obtains data from local cache rather than remote server
 - Local network can have low capacity backhaul (e.g. femto/small-cells, hotspots)
- Proactive Selective Neighbor Caching
 - Mobile initially connected to proxy i
 - ICN receiver-driven model reveals which data items are requested
 - Select optimum subset of neighbor proxies to proactively cache requested data
 - If mobile connects to one of these proxies it can immediately receive data not obtained due to disconnection
- Selection of neighbor caches to pre-fetch data depends on
 - Probability mobile connects to caches
 - Available cache space
 - Delay reduction gains

Challenges & Opportunities for Enhancing Mobility Support in ICN

Challenges
- Selection of optimal subset of neighbors is hard
 - NP-complete (Knap-sack): different object sizes + limited capacity, different delay gains
 - Optimal Solution: Break to same sized chunks; but that is application-dependent
 - Good approximation: Iterative selection algorithm based on dynamic cache pricing

- Example: 3-level hierarchical proactive caching
 - Publisher and subscribers use ADSL links: Publisher – ADSL – Subscriber
 - Motivation: ADSL is the delay bottleneck
 - Hard to decide optimal cache selection; use centralized selection algorithm

Opportunities
- Support mobile publishers: content cached in proxies
- Accommodate many mobile users by exploiting mobility information + object popularity
- Get data from other proxies in case of a cache miss
 - Multilevel hierarchies implied
 - Taking cache misses into account during cache selection is NP-Hard
 - Parallel download of different chunks from many proxies
- ISP costs rather than delay costs as motivation for proactive caching
- More efficient cache utilization in dense femto-cells or WiFi hotspots
φSAT: The role of Satellites in FI Services

- **Aim:**
 - To investigate the technical feasibility & business viability of the integration of SatCom with terrestrial ICN architectures

- **Results**
 - Methodology to identify application/service scenarios where the capabilities of SatCom and ICN bring highest techno-economic gains
 - Key **SatCom** capabilities: Broadcast/Multicast, Wide Coverage
 - Key **ICN** capabilities: Data aggregation, Multipath Routing, Mobility Support, In-network Caching
 - Candidate scenarios identified
 - Hybrid Broadcast netTV
 - M2M Communications
 - 4G Backhauling
 - Socio-economic evaluation
 - Market evolution for each scenario
An Information-Centric Overlay Network Architecture for Content Distribution and Mobility Support

Ph.D. Dissertation by Konstantinos Katsaros

- **Multicast**
 - *Router Assisted Overlay Multicast (RAOM)*
 - Deploying multicast functionality in an overlay fashion
- **Multicast & Caching**
 - *MultiCache*
 - Enabling caching of data delivered by multicast trees
- **Adapting to the inter-network structure**
 - *H-Pastry*
 - Canonical version of Pastry
- **Mobility Support**
 - *Overlay Multicast Assisted Mobility (OMAM)*
 - Revisiting multicast assisted mobility

Conclusions

- ICN has some common key advantages (across architectures)
- ICN is well positioned to address
 - caching, multi-homing, traffic management, mobility, security...
- PSI: unique features
 - name/ID resolution (for each scope) @RP, rather than flooding
 - centralized routing & resource allocation \(\sim\) SDN
 - fast stateless (multicast) forwarding
 - separate forwarding from resolution
 - no use of reverse path, appropriate for asymmetric links/paths
 - added (to pub/sub) selected security mechanisms
 - secure forwarding (zFilters), scopes, bubbles...
- Outlook
 - Scalability, efficiency
 - Security and privacy
 - the IoT and home networking
 - evolution: tussles resolved at or near run-time

polyzos@aueb.gr
ICN Research Community

- workshops…
 - with ACM SIGCOMM
 - ICN 2011 (Toronto)
 - ICN 2012 (Helsinki)
 - ICN 2013 (Hong Kong)
 - with IEEE INFOCOM
 - NOMEN 2012, 2013

- 1st ACM SIGCOMM ICN Conference
 - Paris Sept. 2014

- 2nd ACM SIGCOMM ICN Conference
 - San Francisco, end Sept. 2015

- ICNRG@IERTF
- Journals & Magazines Special Issues

polyzos@acm.org
POINT: IP Over ICN - The Better IP?

● Project
 ◆ Duration: 1/1/2015-31/12/2017
 ◆ Partners:
 ▶ Aalto U (co-ordinator), ELL-I (FI)
 ▶ Intracom Telecom, AUEB-RC (GR)
 ▶ CTVC Ltd, Interdigital Europe, U Essex (UK)
 ▶ RWTH Aachen (DE)
 ▶ Primetel (CY)

● Concept
 ◆ Premise: IP apps can do better over ICN
 ■ Need to define what “better” means
 ◆ Better utilisation in HTTP streaming scenarios
 ◆ Better privacy of personal data and metadata
 ◆ Better management of virtual network paths
 ◆ Better (fairer) content distribution
POINT Domain

- **Focus**
 - 1 provider
 - UE: no changes (required)
 - ICN used internally in the network
 - ICN could be exposed to UE

The IP interface represents the various supported abstractions, such as HTTP, CoAP, TCP or IP.
Objectives

- Define KPIs from an IP viewpoint
 - Measure performance of IP over ICN
- Define a platform with clear interfaces
 - Allow adding hardware blocks and extensions
- Map Internet abstractions onto an ICN
 - IP, TCP, HTTP, CoAP
- Develop resource coordination mechanisms
 - Multiple resource optimization
- Implement a POINT platform prototype
 - Blackadder+ as IP underlay
- Deploy and evaluate in a field trial
 - Using Primetel’s operational network
- Evaluate the commercial viability of POINT
 - Same methodology as in PURSUIT
- Establish POINT in the wider ICN community
POINT Platform Architecture

Blackadder +

- Application-facing abstractions
 - HTTP, CoAP,…

- Novel dissemination strategies
 - For access networks

- Integration with SDN
 - ICN over SDN

- Flexibly-grained QoS
 - per abstraction

- Key target protocols/services
 - http
 - CoApp
 - IP

polyzos@aueb.gr
Thank you!

Publish/Subscribe Internetworking & the H2020 POINT project

George C. Polyzos

Mobile Multimedia Laboratory
Department of Informatics
School of Information Sciences and Technology
Athens University of Economics and Business
Athens, Greece

http://mm.aueb.gr/
polyzos@aueb.gr